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OVERVIEW

• SIMPLIFICATION OF HIGHER-DIMENSION DYNAMICAL 
SYSTEMS VIA NPCA NEURAL NETWORKS

• APPLICATION TO REACTIVE FLOWS (COMBUSTION)
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COMPETING TECHNIQUES

• STEADY STATE APPROXIMATION

• PARAMETER LUMPING

• ILDM-CPS

• SINGULAR PERTURBATION THEORY

• CENTER MANIFOLD REDUCTION                                      
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Objective

• Implement Non-Linear PCA (NPCA)
• PCA-Principal Component Analysis
• NPCA Implemented as Neural Network
• Speed Up Training of NPCA via 
• Techniques of Kernel Smoothing
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OUTLINE

• INTRODUCTION-Neural Network Basics
• NONLINEAR PRINCIPAL COMPONENT ANALYSIS
• DETAILED MATHEMATICAL ANALYSIS
• RESULTS: 
• . IMPLEMENTATION: SAMPLE MECHANISM) 

• BRIEF DESCRIPTION OF FLOW SOLVER – KEN JOHNSON
• CONCLUSIONS
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Neural Network Basics..1

• Artificial NN Consists of Computational Units 
Called Neurons

• Receive a Number of Input Signals
• Produce an Output Signal
• Real Valued Functions on Rn
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Neural Network Basics..2

• Neuron
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Neural Networks Basics…3

• Single Neuron (also known as Perceptron) Can 
only estimate linear functions.

• For General Non-Linear Problems MultiLayer
Perceptrons (MLP-NN) are usually used.

• Feedforward Neural Network with one Hidden 
Layer Containing k neurons approximates a Real 
Valued Non-Linear Function on Rn as 
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Neural Networks Basics…4

1 1... , , ...k o kb b c c c ∈¡
• w’s,b’s,c’s are parameters that specify a NN
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Neural Networks Basics…5
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Neural Networks Basics…6
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Neural Networks Basics…7

• Given (iid) Training Data, Chosen at Random from 
a population (X,Y) {(X1,Y1)…(X m ,Y m )}

• The Parameters of the Network are chosen to 
minimize the empirical L 2 risk
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Neural Networks Basics…8

• There are No Practical Algorithmic  for finding the 
Global Minimum  of L 2

• Algorithm Described above is the Popular 
BackPropagation

• Back Propagation (using steepest descent) often 
converges to a local minimum 
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Nonlinear Principal Component Analysis (NPCA)

• 1.  Need for Mechanism Reduction
• Typically can consists of >500 species
• >2000 elementary chemical reactions

• 2. Full chemistry model will have to solve
• >500 coupled Differential Equations
• Computationally prohibitive
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NPCA…2.

• 3. Most reaction state space maybe redundant
• Active space may exist as manifolds of lower 

dimension
• 4. NPCA global transformation mapping from 

• High dimensional state space (n) to
• Low dimensional manifold (m)    
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NPCA…3

• 5. Let:

• Intrinsic Dimensionality of Data really m not n
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NPCA-NN…4
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• Need sufficient x-data points in state space -
a  number of representative trajectories
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Generating Trajectory Data

• Need representative data within flammability 
limits of a given fuel

• Can use D.O.E. Software

• Trajectories Generated at Random
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NPCA-NN Algorithm

• Consists of:
• Two standard Multilayered Perceptrons (MLP)
• First network implements G
• Second network implements H
• The “Bottleneck Layer” is the reduced 

dimension
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NPCA-NN Schematic
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Training in stages

• Accelerates convergence by several orders of 
magnitudes

• Problem: Combining Networks is a non-linear 
operation

• Several methods of combining available - still 
active area of research
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Results

• Test Mechanisms

– Bromide acid synthesis
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Bromide acid synthesis Mechanism
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Results-1
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Results-2
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Results-3
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Function Approximation…1

• We have a population consisting of random 
vectors (X,Y). X is Rn – valued and y is R-valued 

• Looking for a function 
• f: Rn ->R
• Our Criteria for finding f is that the expectation of 

L 2 norm (risk) is small
• Note L 2 = |f(X)-Y|2 , is also random
• Let m(x) be the function that minimizes E |f(X)-Y|2
• Function m(x) is unknown, we only have 

sampled data to estimate it.
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Function Approximation…2

• Given a function g(x) of a random variable x

[ ( )] ( ) ( )g x g x P x dxΕ = ∫
Where P(x) is the distribution or density of 
x
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Function Approximation…3

Let            be an approximation of m(x) using data

= m(x) if the first term on right, L2=0
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Function Approximation…4

• The important term P(x) is the distribution, or 
density of X. It is usually also estimated from 
data.

• A popular approach is termed Kernel Smoothing.

• Define a Kernel function               having compact 
support and symmetric about origin 

• Also

( )ix XK
h
−

( ) ( ) 1K x d x =∫
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Function Approximation…5

The Density can be approximated from data
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Function Approximation…6
• Now how do we Estimate m(x) from data
• Several different approaches have been 

developed 
• Parametric 
• Non-Parametric Approaches

• Examples of Non-Parametric methods 
• Neural Networks(NN)
• Radical Basics Functions Networks
• Orthogonal series methods (including 

wavelets) 
• Least squares Estimates using splines
• Local Polynomial Kernel Estimates

• Our focus is on NN approaches 
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Function Approximation…7
• From statistical theories of regression m(x) can be 

defined as ( ) ( | ) ( | )

( , )
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• P(x,y) is the joint density of (X,Y). It can be shown 
that the above can be estimated from data as
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Function Approximation…8

• This is known as the Nadaray and Watson 
Estimator (NWE).

• It is the basis of the Generalized Regression 
Neural Network. (GRNN).

• One major advantage of this NN is that estimates 
of Y are obtained directly without any training.

• We have Chosen to Study this Network and find 
ways of incorporating the Desirable Properties in 
our Data Reduction Model- NPCA-NN
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Schematic of GRNN
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Further Mathematical Analysis of GRNN
• In Classical Parametric Statistics, L 2 is also 

termed the Mean Squared Error (MSE).

• Which can be decomposed into Variance and 
squared Bias

µ µ 2( ) ( )MSE m m m= Ε −

µ µ 2
ˆ( ) ( )MSE m Var m m m⎡ ⎤= + Ε −⎣ ⎦
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Further Mathematical Analysis of GRNN..2

• With a Change of Variable Let 

• To Compute                 we need the mean and 
variance of 
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Further Mathematical Analysis of GRNN..3

• The (NW)-Estimator is once again

• Note that the denominator is the density estimate 
of P(x)
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Further Mathematical Analysis of GRNN..4

• ie

• The (NW)-Estimator is Linear and can be written 
as:

µ
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Further Mathematical Analysis of GRNN..5

• Therefore Means and Variance is easily 
computed

• ie you are smoothing the points (xi,m(xi)) rather 
than (Xi,Yi)
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Further Mathematical Analysis of GRNN..6

• In Computing Means and Variance of NW-Estimator, 
Denominator and Numerator are treated separately ie for 
denominator:

• Variance can be written as: variance = 2nd moments –
(mean)2

• To proceed, convolution is used followed by Taylor series 
expansion. Derivation is long
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Further Mathematical Analysis of GRNN..7

• Final Theorem is:
• Bias Term: Let u=x-Xi

• Variance Term

2
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Further Mathematic Analysis of GRNN…8

• These analysis answer two important concepts: 
Consistency and Rate  of Convergence of NW-
Estimator.

• In addition, In CFD of Reactive Flows, we want to 
look at the Bias terms.

• How does the Bias term depend on the Pattern of 
design points P(x) asymptotically?
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Further Mathematic Analysis of GRNN…9

• Can you choose weight function K(u) such that the Bias is 
independent of P(x) ? Answer Yes-> Grid Free Solution of 
CFD using Neural Network

• An Estimator is said to be Consistent if as the sample size 
grows:

• Consistency does not tell us How Fast L 2 approaches 0. 
Here we look at the expectation of L 2 error. 

• Difficult to analyze without imposing some smoothens 
assumptions  on m(x)

[ ]2ˆm ( ) ( ) ( ) 0
m
li m x m x P x dx
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GRNN Results

• 3-Dimensional Test Function

2 2 2
1 2 3 1 2 3 1 2 2 3 1 2 3( , , ) 4 2 5 9f x x x x x x xx x x x x x= + + − + − − +
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Results, cont.
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Results, cont.
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The Euler Solver
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Overview

• The Euler Solver
• General Layout of the Program
• Results
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The Euler Solver

• The general incompressible flow of the governing 
equation:

2 2 2
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The 2D Euler Equation

0                             (1.1a)

0                (1.1b)

0                 (1.1c)
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Euler equations in conserved form

2
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General Layout of the program

• Program requirements
• Boundary and Initial Conditions
• Solution procedure
• Initializing the variables
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Program Requirements

• The grids should be generated independently and 
read in as part of the initial data.

• The initial values must be made available to the 
program and part of the initial data as well.

• The time-steps should  be chosen according to 
CFD criteria for stability.
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Boundary and Initial Conditions

• The boundary conditions are calculated using 
extrapolation, interpolation and in some cases 
algebraic formulae.

• Since the Euler solver uses the time marching 
approach, it requires initial values of 
temperature, pressure etc. 
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Solution Procedure

• Step one
• Set up the grid and the initial guess

– These information are read into the 
program.

– Apart form the grid and initial guess 
various other data must be fed in so that 
the problem is well defined

– Boundary conditions
– Coefficients of the Runge-Katta

scheme
– Relaxation parameter
– Printing criteria etc
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Solution Procedure II

• Step two
• Computation of all relevant quantities

– Cell areas and projective lengths along 
the two Cartesian axes 

– Radii of curvature at points of the blade 
surfaces.
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Initializing the variables

The variables to initialize are the ones that will be 
required in the approximating of the continuity, 
momentum and energy.
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Problem

• The code was tested on a simple problem, which was to 
solve for steady flow of air through a plane symmetrical 
diffuser. In this problem the viscosity and density of air 
were taken to be 1.91 X 10 –5 kg/ms and 1.21 kg/m3, 
respectively. The flow profile at the inlet was assumed to be 
flat with a bulk velocity of 160 m/s. The flow at the outlet 
was assumed to be fully developed..
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Plane Symmetrical Diffuser
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Results for Mach Number
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Results Static Pressure Distribution
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Conclusion

• Demonstrated the NPCA reduction technique for 
mechanism reduction on sample reaction 
mechanism

• Details of Mathematical Analysis Presented
• Description of Test Flow Solver
• Work is in progress
• Acknowledge the support of DOE Under grant 

numbers:
• DE-FG26-00NT-40830
• DE-FG26-03NT-41913
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